An enantiospecific total synthesis of (+)-muricatacin

Peter Somfai

Organic Chemistry 2, Chemical Center, Lund Institute of Technology, University of Lund, POB 124, S-221 00 Lund, Sweden

This paper describes an enantiospecific total synthesis of (+)-muricatacin 1 from the L-threitol derivative 2, itself easily prepared from diethyl L-tartrate.

Muricatacin 1, an acetogenin related γ -lactone, was recently isolated from the seeds of Annona muricata.¹ Interestingly, it was found that the isolated material was a mixture of enantiomers, and by comparison with a synthetic analogue it could be shown that the (4R, 5R) isomer was present in excess (ent-1, $\approx 25\%$ ee). Owing to its interesting biological properties, cytotoxic activity against various tumour cell lines, as well as those of the more complex, structurally related acetogenins,² muricatacin 1 has become a popular target for organic chemists. To date four total syntheses of 1 have been reported,³ all of which yielded the title compound in high enantiomeric excess. Recently we described the preparation of the enantiomerically pure protected D-threitol derivative ent-2 in four steps and 83% yield from diethyl D-tartrate^{4a} and also demonstrated its utility as a versatile four-carbon unit by incorporating it in our total syntheses of D-erythro-sphingosine^{4a} and (+)-altholactone.^{4b} Subsequent to our initial study. Yonemitsu and co-workers have described a somewhat different preparation of 2^{5a} and, furthermore, used it as a chiral starting material for the synthesis of the C(27)–C(36) subunit of halichondrin B.^{5b} As a continuation of our previous investigation we now wish to report on the enantiospecific total synthesis of (+)-muricatacin 1 starting from the readily available derivative 2 (Scheme 1).

Results and discussion

The undecyl side-chain required for (+)-muricatacin was introduced into the alcohol 2 by an efficient two-step procedure previously used by us, as shown in Scheme 2.4b Thus, when 2 was treated with toluene-p-sulfonyl chloride in pyridine the corresponding tosylate was formed in high yield and the crude product was normally used in the subsequent step. When this material was subjected to a copper-catalysed⁶ addition of freshly prepared undecylmagnesium bromide in THF at -30 °C a rapid reaction ensued delivering compound 3 in 82% yield for two steps. Unmasking of the acetal protective group was then effected by exposure to dilute sulfuric acid in methanol furnishing the diol 4 in 91% yield.⁷ In order to set the stage for the two-carbon homologation and lactone formation, 4 was converted into the epoxide 5. Thus, selective tosylation of 4 at the primary hydroxy group and then subjecting the crude reaction product to potassium carbonate in methanol gave 5 in high yield (83% from 4).

Schreiber and co-workers have developed an efficient protocol for the conversion of a terminal epoxide into the corresponding γ -lactone.⁸ Opening of the epoxide with the lithium anion of ethoxyacetylene gives the corresponding hydroxy alkynyl ether which is then treated with mercury(II) chloride and toluene-*p*-sulfonic acid to effect hydrolysis and lactone formation. In a subsequent study, MaGee has shown that lactones can be formed by intramolecular trapping of ketenes, themselves available from the corresponding hydroxy alkynyl ethers by a retro-ene reaction.⁹ Of these two methods the latter one seemed more appealing since it would omit the use of heavy metal salts.

Thus, addition of the lithium anion of ethoxyacetylene to the epoxide 5 in THF at -78 °C gave the alkyne 6 in 79% yield. Slow addition of this material to carefully dried refluxing xylenes resulted in the smooth formation of the lactone 7 (79% yield) as the only detectable product. Finally, removal of the PMB-group (DDQ, CH₂Cl₂, H₂O)¹⁰ gave (+)-muricatacin (89% yield), its spectroscopic data being in excellent accord with published values.^{1,3}

In conclusion, we have developed an efficient and enantiospecific total synthesis of (+)-muricatacin in 8 steps and 34% overall yield from the readily available L-threitol derivative 2.

Experimental

¹H and ¹³C NMR spectra were obtained on a Varian XL-300 spectrometer using CDCl₃ (CHCl₃ δ 7.26) as solvent. J Values are given in Hz. IR spectra were run on a Perkin-Elmer 298 spectrophotometer and only the strongest/structurally most important peaks are listed. Optical rotations ([α]_D), measured on a Perkin-Elmer 141 polarimeter at the sodium D line and at ambient temperatures, are recorded in units of 10⁻¹ deg cm² g⁻¹. Flash chromatography employed Grace Amicon silica gel 60 (0.035–0.070 mm). Pyridine was distilled from calcium hydride immediately before use; tetrahydrofuran (THF) and xylenes were distilled from sodium benzophenone ketyl. All reactions were run in septum-capped, oven-dried flasks under atmospheric pressure of nitrogen, solvents, reactant solutions and liquid reagents being transferred *via* oven-dried syringes.

(1'S,4S)-2,2-Diethyl-4-[1'-(4-methoxybenzyloxy)tridecyl]-1,3dioxolane 3

The alcohol 2 was converted into the corresponding tosylate as described in ref. 4b.

To a slurry of CuI (0.712 g, 3.730 mmol) in THF (50 cm³) at -30 °C was added a solution of freshly prepared undecylmagnesium bromide [from 1-bromoundecane (8.790 g, 37.38 mmol) and Mg (0.980 g, 37.38 mmol) in THF (50 cm³)]. After the resultant mixture had been stirred for 10 min the abovementioned tosylate (3.469 g, 7.477 mmol) in THF (5 cm³) was added dropwise to it. The mixture was kept at -30 °C for 90

Scheme 2 Reagents, conditions and yields: i, p-TsCl, pyridine, 0 °C; ii, $C_{11}H_{23}MgBr$, CuI, THF, -30 °C, 82%; iii, 2% aq. H_2SO_4 , MeOH, 91%; iv, p-TsCl, pyridine, 0 °C; v, K_2CO_3 , MeOH, 83%; vi, ethoxy-acetylene, BuLi, BF₃·Et₂O, THF, -78 °C, 79%; vii, heat, xylenes, 79%; viii, DDQ, CH₂Cl₂, H₂O, 89%

min and then poured into Et₂O and aq. NH₄Cl/NH₄OH with rapid stirring. The organic layer was separated and the aqueous phase was extracted twice with Et₂O. The combined organic phases were washed once with brine, dried (MgSO₄) and concentrated. Flash chromatography (EtOAc-heptane 1:19 1:4) of the residue gave the title compound 3 (2.116 g, 82%) as an oil (Found: C, 74.9; H, 11.0. C₂₈H₄₈O₄ requires C, 74.9; H, 10.8%); $[\alpha]_D - 3.25$ (c 2.95 in CHCl₃); v(film)/cm⁻¹ 2940 and 1610; $\delta_{\rm H}$ (300 MHz; CDCl₃) 7.29 (2 H, J 8.9, Ar), 6.86 (2 H, J 8.9, Ar), 4.74 (1 H, d, J 11.2, OHCHAr), 4.56 (1 H, d, J 11.2, OHCHAr), 4.15 (1 H, m, OHCCHOPMB), 3.97 (1 H, dd, J 7.8 and 6.1, HCHO), 3.79 (3 H, s, OMe), 3.56 (1 H, t, J 7.8, HCHO), 3.39 (1 H, m, CHOPMB), 1.71-1.59 [4 H, m, OC(CH₂CH₃)], 1.46-1.13 (22 H, m, 2'-H₂-12'-H₂) and 0.98-0.82 [9 H, m, OC(CH₂CH₃) and 13'-H₃]; δ_{C} (75 MHz; CDCl₃) 159.1, 131.2, 129.6, 113.7, 113.2, 79.5, 79.4, 72.6, 66.8, 55.2, 31.9, 31.0, 29.8, 29.7, 29.6, 29.5, 29.4, 25.5, 22.6, 14.1, 8.3 and 8.1 (Found: M^+ , 448.3564. Calc. for $C_{28}H_{48}O_4$: M^+ , 448.3553).

(2S,3S)-3-(4-Methoxybenzyloxy)pentadecane-1,2-diol 4

To a stirred solution of compound 3 (2.017 g, 4.502 mmol) in MeOH (50 cm³) was added 2% aq. H_2SO_4 (0.5 cm³). After

2 d solid K_2CO_3 was added to the solution and the resultant heterogeneous mixture was stirred for an additional 30 min. The solvents were removed and the residue was dissolved in Et₂O- H_2O . The organic layer was separated and the aqueous phase was extracted twice with Et₂O. The combined organic phases were washed with brine, dried (MgSO₄) and concentrated. Flash chromatography (EtOAc-heptane 2:3- \rightarrow 1:1) of the residue gave the title compound 4 (1.557 g, 91%) as an oil (Found: C, 72.9; H, 10.6. C₂₃H₄₀O₄ requires C, 72.6; H, 10.6%); $[\alpha]_{\rm D}$ + 26.0 (c 1.08 in CHCl₃); ν (film)/cm⁻¹ 3400, 2910 and 1615; $\delta_{\rm H}(300 \text{ MHz}; \text{CDCl}_3)$ 7.25 (2 H, d, J 9.0, Ar), 6.88 (2 H, d, J 9.0, Ar), 4.60 (1 H, d, J10.7, HCHAr), 4.39 (1 H, d, J10.7, HCHAr), 3.79 (3 H, s, OMe), 3.72-3.55 (3 H, m, CH₂OH and CHOH), 3.44 (1 H, m, CHOPMB), 2.58 (1 H, m, OH), 2.23 (1 H, m, OH), 1.61-1.49 (2 H, m, 4-H₂), 1.41-1.07 (20 H, m, 5-H₂-14-H₂) and 0.88 (3 H, m, 15-H₃); δ_{C} (75 MHz; CDCl₃) 159.4, 130.2, 129.6, 114.0, 79.4, 72.7, 71.8, 64.1, 55.3, 31.9, 30.2, 29.9, 29.7, 29.6, 29.4, 25.1, 22.7 and 14.1 (Found: M⁺, 380.2925. Calc. for C₂₃H₄₀O₄: M^+ , 380.2927.

(2S,3S)-3-(4-Methoxybenzyloxy)-1,2-epoxypentadecane 5

To a solution of compound 4 (1.584 g, 4.169 mmol) in pyridine (5 cm³) at 0 °C was added toluene-*p*-sulfonyl chloride (0.874 g, 4.586 mmol). The resultant mixture was stirred at 0 °C for 13 h and then poured into Et₂O-aq. CuSO₄. The layers were separated and the aqueous layer was extracted once with Et₂O. The combined organic phases were washed once with water and once with brine, dried (MgSO₄) and concentrated. To the above crude tosylate in MeOH (20 cm³) at 0 °C was added K₂CO₃ (4.03 g, 29.18 mmol). After the mixture had been stirred for 30 min at 0 °C the solvents were removed and the residue was dissolved in Et₂O-H₂O. The layers were separated and the aqueous phase was extracted once with Et₂O. The combined organic phases were washed once with brine, dried $(MgSO_4)$ and concentrated. Flash chromatography (EtOAc-heptane \rightarrow 1:3) of the residue gave the title compound 5 (1.255 g, $1 \cdot 4 -$ 83%) as an oil (Found: C, 76.1; H, 10.7. C₂₃H₃₈O₃ requires C 76.2; H, 10.6%); $[\alpha]_D$ –19.9 (c 1.53 in CHCl₃); v(film)/cm⁻¹ 2930 and 1615; δ_H(300 MHz; CDCl₃) 7.29 (2 H, d, J 8.9, Ar), 6.87 (2 H, d, J 8.9, Ar), 4.76 (1 H, d, J 11.2, HCHOAr), 4.52 (1 H, d, J 11.2, HCHOAR), 3.69 (3 H, s, OMe), 3.10 (2 H, m, HCO and HCOPMB), 2.77 (1 H, m, HCHO), 2.48 (1 H, dd, J 5.0 and 2.1, HCHO), 1.72-1.38 (2 H, m, 4-H₂), 1.37-1.16 (20 H, m, 5- H_2 -14- H_2) and 0.88 (3 H, t, J 6.7, 15- H_3); δ_c (75 MHz; CDCl₃) 159.1, 130.8, 129.4, 113.7, 80.1, 71.3, 55.3, 55.2, 43.2, 32.4, 31.9, 29.7, 29.6, 29.5, 29.4, 25.5 and 14.1 (Found: M⁺, 362.2817. Calc. for C₂₃H₃₈O₃: *M*⁺, 362.2821).

(4S,5S)-1-Ethoxy-5-(4-methoxybenzyloxy)heptadec-1-yn-4-ol 6 To a solution of ethoxyacetylene (1.0 g, 6.757 mmol, 50% wt. in hexanes) in THF (10 cm³) at -78 °C was added BuLi (1.35 mol dm⁻³ in hexanes; 4.17 cm^3 , 5.630 mmol). After the solution had been stirred for 20 min BF₃·Et₂O (0.692 cm³, 5.630 mmol) was added to it followed by a dropwise addition of compound 5 (0.815 g, 2.252 mmol) in THF (10 cm³). The resultant mixture was stirred for 1 h at -78 °C and then aq. Na₂CO₃ was added to it. The layers were separated and the aqueous phase was extracted once with Et₂O. The combined organic phases were washed once with water and once with brine, dried $(MgSO_4)$ and concentrated. Flash chromatography (EtOAc-heptane \rightarrow 1:3) of the residue gave 6 (0.744 g, 79%) as a slightly 1:4---greenish oil, $[\alpha]_{D}$ + 26.5 (c 1.03 in CHCl₃); v(film)/cm⁻¹ 3460, 2930, 2270 and 1610; $\delta_{H}(300 \text{ MHz}; \text{CDCl}_3)$ 7.27 (2 H, d, J 8.8, Ar), 6.88 (2 H, d, J 8.8, Ar), 4.59 (1 H, d, J 10.6, HCHAr), 4.48 (1 H, d, J 10.6, HCHAr), 4.11 (2 H, q, J 12.5, OCH₂CH₃), 3.80 (3 H, s, OMe), 3.62 (1 H, m, CHOH), 3.51 (1 H, m, CHOPMB), 2.41-2.32 (2 H, m, CHCC), 1.69-1.52 (2 H, m, 4-H), 1.42-1.17 (23 H, m, 5-H₂-14-H₂ and OCH₂CH₃) and 0.88 (3 H, t, J 6.7, 15-H₃); $\delta_{\rm C}$ (75 MHz; CDCl₃) 159.3, 130.6, 129.5, 113.8, 90.4, 79.8, 74.1, 72.3, 71.8, 55.2, 33.7, 31.9, 30.5, 29.8, 29.7, 29.6, 29.4, 25.4, 22.7, 22.7, 14.4 and 14.1 (Found: M⁺, 432.3238. Calc. for C₂₇H₄₄O₄: M⁺, 432.3240).

(5*S*,1'*S*)-5-[1'-(4-Methoxybenzyloxy)tridecyl]tetrahydrofuran-2-one 7

A solution of compound 6 (0.539 g, 1.248 mmol) in xylenes (10 cm³) was added dropwise to refluxing xylenes (30 cm³) over 30 min. After refluxing the resultant mixture for an additional 2 h it was cooled to room temperature and the solvents were removed. Flash chromatography (EtOAc-heptane 1:4-2:3) of the residue gave the title compound 7 (0.398 g, 79%), mp 51-53 °C (Found: C, 74.3; H, 9.8. C₂₅H₄₀O₄ requires C, 74.3; H, 10.0%); $[\alpha]_{D}$ + 10.6 (c 0.92 in CHCl₃); v(film)/cm⁻¹ 2929, 1750 and 1615; $\delta_{\rm H}$ (300 MHz; CDCl₃) 7.27 (2 H, d, J 8.7, Ar), 6.87 (2 H, d, J 8.7, Ar), 4.59-4.48 (3 H, m, OCH₂Ar and HCOOC), 3.79 (3 H, s, OMe), 3.38 (1 H, m, HCOPMB), 2.63-2.48 (2 H, m, CH₂COO), 2.19 (1 H, m, HCHCH₂COO), 1.95 (1 H, m, HCHCH₂COO), 1.54 (2 H, m, 2'-H₂), 1.47-1.11 (20 H, m, $3'-H_2-12'-H_2$) and 0.88 (3 H, m, $13'-H_3$); $\delta_c(75 \text{ MHz};$ CDCl₃) 177.4, 159.3, 130.4, 129.5, 113.8, 81.9, 80.1, 72.3, 55.2, 31.9, 29.8, 29.7, 29.7, 29.6, 29.4, 28.5, 25.3, 24.4, 22.7 and 14.1 (Found: M^+ , 404.2926. Calc. for $C_{25}H_{40}O_4$: M^+ , 404.2927).

(+)-Muricatacin 1

To a solution of compound 7 (0.052 g, 0.129 mmol) in CH₂Cl₂ (5 cm³) was added water (2 drops) and DDQ (0.044 g, 0.193 mmol). The resultant mixture was stirred for 45 min and then poured into Et₂O–H₂O. The layers were separated and the aqueous phase was extracted once with Et₂O. The combined organic phases were washed twice with water and once with brine, dried (MgSO₄) and concentrated. Flash chromatography (EtOAc–heptane 1:3 ----> 2:3) of the residue gave 1 (0.033 g, 89%) as a crystalline solid, mp 72 °C (lit.,^{3b} 65 °C, lit.,^{3c} 73–74 °C); $[\alpha]_D$ + 23.6 (*c* 1.50 in CHCl₃) [lit.,^{3b} + 25 (*c* 1.7 in MeOH), lit.,^{3c} + 23.02 (*c* 1.26 in CHCl₃), lit.,^{3d} + 22.6]; ν (KBr)/cm⁻¹ 3440, 2905 and 1740; δ_H (300 MHz; CDCl₃) 4.42 (1 H, dt, *J* 7.4 and 3.9, HCOOC), 3.56 (1 H, m, CHOH), 2.69–2.47 (2 H, m, CH₂COO), 2.31–2.04 (2 H, m, CH₂CH₂COO), 1.97 (1 H, br s, OH), 1.68–1.42 (2 H, m, 2'-H₂), 1.40–1.18 (20 H, m, 3'-

H₂-12'-H₂) and 0.87 (3 H, m, 13'-H₃); $\delta_{\rm C}$ (75 MHz; CDCl₃) 177.2, 82.9, 73.6, 32.9, 31.9, 29.6, 29.6, 29.5, 29.3, 28.7, 25.4, 24.1, 22.7 and 14.1 (Found: M⁺, 284.2352. Calc. for C₁₇H₃₂O₃: M^+ , 284.2351).

Acknowledgements

This work was supported financially by the Swedish Natural Science Research Council and Astra Draco AB. We are grateful to Dr D. Tanner for linguistic improvements of the manuscript.

References

- 1 M. J. Rieser, J. F. Kozlowski, K. V. Wood and J. L. McLaughlin, Tetrahedron Lett., 1991, 32, 1137.
- 2 J. K. Rupprecht, Y. H. Hui and J. L. McLaughlin, J. Nat. Prod., 1990, 53, 237.
- 3 (a) G. Scholz and W. Tochtermann, *Tetrahedron Lett.*, 1991, 32, 5535; (b) B. Figaderè, J.-C. Harmange, A. Laurens and A. Cavé, *Tetrahedron Lett.*, 1991, 32, 7539; (c) Z.-M. Wang, X.-L. Zhang, K. B. Sharpless, S. C. Sinha, A. Sinha-Bagchi and E. Keinan, *Tetrahedron Lett.*, 1992, 33, 6407; (d) J. A. Marshall and G. S. Welmaker, *J. Org. Chem.*, 1994, 59, 4122.
- 4 (a) P. Somfai and R. Olsson, *Tetrahedron*, 1993, **49**, 6645; (b) P. Somfai, *Tetrahedron*, 1994, **50**, 11315.
- 5 (a) K. Horita, Y. Sakurai, S. Hachiya, M. Nagasawa and O. Yonemitsu, *Chem. Pharm. Bull.*, 1994, **42**, 683; (b) K. Horita, Y. Sakurai, M. Nagasawa, S. Hachiya and O. Yonemitsu, *Synlett*, 1994, 43.
- 6 C. Brockway, P. Kocienski, C. Pant, J. Chem. Soc., Perkin Trans. 1, 1984, 875.
- 7 S. Masamune, P. Ma, H. Okumoto, J. W. Ellingboe and Y. Ito, J. Org. Chem., 1984, 49, 2834.
- 8 M. Nakatsuka, J. A. Ragan, T. Sammakia, D. B. Smith, D. E. Uehling and S. L. Schreiber, J. Am. Chem. Soc., 1990, **112**, 5583.
- 9 L. Liang, M. Ramaseshan and D. I. MaGee, *Tetrahedron*, 1993, 49, 2159.
- 10 K. Horita, T. Yoshioka, T. Tanaka, Y. Oikawa and O. Yonemitsu, *Tetrahedron*, 1986, 42, 3021.

Paper 4/06751G Received 4th November 1994 Accepted 22nd December 1994